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Abstract

In this paper, the effects of Dropcountr on water usage were examined using household-

level panel data for the City of Folsom, California, from January-2013 to September-

2016, and Austin Water Utility,Texas, from July-2011 to July-2016. Results suggest

that the introduction of the Dropcountr services for the population of households par-

ticipating in Dropcountr causes an aggregate treatment effect of 7% reduction in water

usage in the City of Folsom and 9% reduction in water usage in the Austin Water

Utility with a significant variation in the effect across households dependent on base-

line consumption quintile. In response to the Dropcountr services, households in the

highest quintile of baseline consumption reduce water usage by an estimated 13% in

the City of Folsom and 17% in the Austin Water Utility.
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1 Introduction

While many arid regions already struggle to balance supply and demand of water resources,

climate change will not only exacerbate many of these existing tensions, but will also in-

troduce new conflicts. Mechanisms which not only reduce water consumption, but do so

in a cost effective manner, are invaluable to meet these current and future water resource

challenges. Although limited academic evidence is available as to whether social comparison

programs may offer such benefits in the residential water sector, initial research suggests

meaningful potential. Relying on price adjustments to reduce household water demand re-

sults in uncertainty in revenue forecasting for utilities and stirs political rancor due to equity

concerns for this basic good.

Moreover, debate persists in the academic literature as to the significance of and the type

of (average versus marginal) prices effects on consumption decisions. Generating frequent

and highly granular micro-level household data through partnerships between a digital social

comparison product and water service providers will improve academic and policy-maker in-

formation around decision-making over residential water demand management programming.

Well-designed experiments and partnerships have the potential to reduce consumption, while

also providing more precise estimates about how various price and non-price management

tools, as well as household characteristics, determine water consumption. Additionally, such

information could be leveraged not only to direct more effective and efficient water manage-

ment strategies, but also to enable improved forecasting of future water demand, which is

necessary in determining optimal state and regional regulatory and infrastructure choices.

Hence, this type of research is important in developing solutions to water resource challenges

that are impactful, cost-effective, and efficient.

This paper will contribute to a substantial body of similar research in the energy sector

and growing, but less developed work, in social comparison programs for the water sec-

tor. Experimental designs in numerous markets with Opower, an information sharing and

social comparison tool used in residential electricity management programming, have al-

lowed for a multitude of research questions to be explored with respect to residential energy
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consumption. In general, these findings show an economically and statistically significant

average treatment effect, with evidence of heterogeneous impacts and advantages over other

programs in reducing energy consumption in a cost-effective manner (Allcott, 2011, 2012;

Ferraro et al., 2011). Limited academic analysis has been generated in the water sector,

however; the authors are aware of only two analyses published in peer-reviewed academic

journals, which examined the effect of WaterSmart services in three California utilities and

isolated program in Cobb County Georgia (Brent et al., 2015; Ferraro and Price, 2013).

This paper examines the effect of a social-norm-based conservation program on house-

holds’ water usage. The program under study is administered by Dropcountr (DC), which

is a mobile and web application that provides information to water utilities and their cus-

tomers. Their program provides information on (i) current water usage, (ii) a comparison

to the previous usage, (iii) comparison to similar nearby households, and (iv) the efficient

budget for households. In addition, the web interface that also provides tips about where

households can save water and connects them to the existing water utility rebate programs

on water saving appliances. DC also monitors households’ hourly water usage data to iden-

tify possible leaks in their water system. They use unexpected boosts in water consumption

as a signal of a leak in the households’ water system and sends an email message or phone

alert to the customer. Hence, DC is designed to motivate households to reduce their water

use by changing their behavior, adopting water efficient technologies or finding leaks.

For the City of Folsom, the data used for this analysis includes two years of historical

consumption, along with twenty months of data under the DC pilot program, spanning

January 2013 through September 2016. For the Austin Water Utility (AWU), the panel

begins July 2011 and ends in July 2016; this period includes the start date of the DC service

(July 2015). This program was designed by DC as an opt-in program, therefore analysis of a

treatment effect is challenged by this non-experimental design. However, various statistical

tools will be explored to minimize the challenges of interpreting results.

To preview results, this initial research suggests that DC has a statistically and economi-

cally significant conserving effect on water consumption at the household level for customers

3



who enrolled in the service. The estimated aggregate treatment effect in the City of Folsom

is a 7% reduction in average monthly consumption for the enrolled households. This effect

is 9% in AWU. There appears to be a stronger effect for those households identified as high

water consumers in the baseline period during the summer months. This paper also finds

evidence of a “boomerang” effect for those households in the lower portion of baseline dis-

tribution, explained in the Analysis section below. These results are particular to the City

of Folsom and AWU with an opt-in program design. The precise magnitude of a DC effect

on household water consumption will vary both by location, experimental design, and by

time-specific conditions, such as weather conditions and variations in other determinants of

water consumption that correlate with time and location.

This paper proceeds as follows: Section 2 discusses relevant academic literature; Section

3 offers an overview of the DC business model and description of services; Section 4 describes

data and method; analysis of the program is presented in Section 5; the paper concludes with

discussion, summary, and policy implications in Section 6.

2 Relevant Literature

This paper has relevance to existing literature in two particular areas: estimating the effect of

social comparison on consumption decisions, in general, and understanding the determinants

of residential water demand, in specific. Price response in household water consumption has

been studied extensively in the academic literature. Debate persists in how decision-makers

are affected by both the qualitative aspects of price (block rates versus uniform pricing and

average versus marginal) and the quantitative changes (estimating elasticities) (Dalhuisen

et al., 2003; Ito, 2014; Olmstead et al., 2003, 2007; Olmstead and Stavins, 2007). However,

price instruments to reduce residential demand are considered a political liability, complicate

revenue estimation for utilities, and inspire concerns over the impacts to lower income house-

holds (Agthe and Billings, 1987). Additionally, it is widely understood that other factors

determine residential water demand, such as: income, household size, lot size, landscaping,
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and weather. Buck et al. (2015) uses a data-driven process to identify model performance

in predicting residential water demand, which reveals that price is not necessarily the most

important determinant.

Consistent with this, utilities often employ non-price demand side management (DSM)

strategies to influence household water consumption. Renwick and Green (2000), estimate

the effects of six different categories of non-price DSM policies, which include informa-

tion and rebate opportunities. Not surprisingly, they find that mandatory policies result

in larger demand reductions, relative to voluntary programs. They also identify areas where

more research is needed, including the effect of household characteristics and of multiple,

simultaneous policy tools on aggregate demand. Services such as DC, which not only have

the technological flexibility to vary signals, are able to amass frequent, granular data that

can be used to fill knowledge gaps. Additionally, recent research has estimated household

willingness-to-pay to avoid water service disruptions for some California utilities (Buck et al.,

2015, 2016). These estimates may help utilities evaluate the conservation benefits that are

possible through various categories of messaging, including social norms, information, and

prosocial language.

Social comparison of household consumption first began in the residential electricity sec-

tor. The leading figure in this movement has been Opower, which partners with utilities to

create content with the objective of reducing household electricity demand and improving

efficiency and conservation. A growing collection of research in this field has provided esti-

mates on program effectiveness, as well as evaluating persistence of treatment and examining

site selection bias (Allcott, 2011; Allcott and Rogers, 2012; Ayres et al., 2012).These analy-

ses estimate treatment effects in the range of 1.2 -3.3%, which varies according to location

and program implementation, but appears to persist over time. Research on heterogeneous

effects suggests that targeted content, that considers subpopulation attributes, improves

messaging response (Costa and Kahn, 2013). Allcott (2012) identifies a problem in site and

population selection bias, where program evaluation of early-adopting utilities overstate the

treatment effect relative to implementation across less environmentally progressive regions

and populations.

5



This business model of combining social, behavior, and data science to impact household

decision-making is being replicated in the water sector. WaterSmart Software has been

building partnerships with water utilities in California, as well as other states, for the past

several years. In one analysis, this service has been shown to cause a 5% reduction in average

consumption for two California markets, with no statistically significant effect in a third

(Brent et al., 2015). A 2007 randomized experiment in Cobb County Georgia found strong

evidence that social comparison messages had a substantially larger impact than prosocial

content and technical recommendations (Ferraro and Price, 2013). They find an estimated

4.8% effect when treatment combines social comparison, prosocial messaging, and technical

suggestions. Both the WaterSmart program and Georgia study find significant heterogeneity

in treatment effect across household types, while only the WaterSmart analysis observes

stable persistence in treatment effect over time. DC differs from both of these programs for

their emphasis on leveraging digital communication platforms, rather than paper reports,

which allows for greater flexibility in message content, more frequent and varied content,

and the option to survey customer feedback.

We analyze the effect of enrollment in DC service on average monthly water consumption

in the City of Folsom and AWU. We provide evidence that DC effect in the water sector

is comparable and even larger than Opower‘s effect in the energy sector. In addition, we

examine the heterogeneity in the treatment effect by baseline water usage. Understanding

variation in treatment effects of DC helps target subgroups in a cost effective manner. Also,

this result helps researchers to understand generalizability of the treatment effects to differ-

ent populations and places (Heckman et al., 1997; Djebbari and Smith, 2008; Ferraro and

Miranda, 2013; Manski, 2004; Imai et al., 2013; Ferraro and Miranda, 2013).

3 Overview of Dropcountr Services

DC users have anytime access to water usage and other information via their mobile devices

(iOS and Android) or by logging into their account on the web. In addition, DC sends users
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a monthly email summary of their water use, including contextual comparisons and water

utility announcements. While DC can and does work with utilities who read their meters

monthly or bi-monthly, DC is especially well suited for utilities who have migrated to smart

metering.

Users who have downloaded the mobile application receive “push” notifications to their

mobile devices. These notifications can alert households when they may be approaching

the next tier for a block-pricing utility, indication of leaks, rebate opportunities or other

tips. The web platform allows customers to access their DC account, where they can explore

their monthly report in more detail and access similar information that may be generated

through the mobile alerts. Additionally, DC will produce and mail paper water use reports

for utilities that request it.

The “Your Water” interface on both mobile and web apps includes four main features:

summary statistics of usage, which includes reference to an individualized “goal”; comparison

of usage to “similar” and “efficient” house- holds; and conservation tips tailored to their

account characteristics. An example of this interface may be found in Figure 1.

The top portion provides statistics on monthly and average daily consumption, along with

a graphical representation of their historical consumption over the previous 12-month period.

In addition, this portion of the report evaluates the households’ performance in achieving

their “goal” water usage. A goal is in effect an account-specific value, and represents the

amount of water required by the account each month of the year. The goal is the sum of an

indoor budget, primarily determined by household occupancy, and an outdoor budget, which

based on parcel size, irrigable area and local weather and other climate factors such as local

evapotranspiration constants. The industry standard and baseline assumption is that 50%

of parcel area is irrigated; households may update this irrigation profile, along with other

household features, in their DC account.

The social comparison component informs customers how their usage compares to “sim-

ilar” or “nearby” households and “efficient” households. A “similar/nearby” household lies

within a specified radius of the given account and is comparable in features, such as lot size
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and household occupancy. Households with consumption below a certain percentile of the

distribution are labeled “efficient” by DC. The “Relevant water saving tips” portion of the

report encourages water savings by suggesting two conservation tips per report, out of over

100 recommendations, which are tailored to that particular household’s profile and past use.

Finally, customers are encouraged to log into their online account, where they may explore

their report in greater detail and receive further conservation information. Table 1 indicates

types and number of messages sent by DC to the enrolled customers in the city of Folsom.

4 Data and Empirical Strategy

4.1 Data

In mid-December of 2014, all account holders in the City of Folsom service area were offered

the option of participating in the DC pilot program on a ”first come, first served” basis. Offer

of service came as a paper advertisement, on city letterhead, with a monthly bill and included

a market insert that illustrated the look and style of the DC web and mobile platforms. The

utility contracted for a maximum of 5,000 accounts, with current enrollment just over 3,350

accounts. Progression of DC enrollment over the treatment period in the City of Folsom

service area is presented in Figure 2.

In April-2015 DC sent an e-mail to over 121,000 AWU customers with customer-provided

e-mail addresses on file in Austin Water’s billing system to recruit participation in this

pilot study. The AWU utility contracted for a maximum of 10,000 accounts, with current

enrollment just over 11,000 accounts. Progression of DC enrollment over the treatment

period in the AWU service area is presented in Figure 3.

For this analysis, households who participated in the DC service offer at any point during

the study period will be referred to as “treated” households, while those who do not are

“control” households. The first full month after which a household has received their first

DC report is considered the first treatment month. Therefore, in the City of Folsom since
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enrollment began in December 2014, the first reports were generated in January 2015, makes

the first possible treatment month. For the AWU, June 2015 is first possible treatment

month. This approach is consistent in defining treatment for both Opower and WaterSmart

program analysis. Using this definition of treatment, rate of enrollment is represented in

Figure 2 for the City of Folsom and in Figure 3 for the AWU.

Table 2 and Table 3 present summary statistics for the number of households and also

a number of observations before and after treatment in each group for the City of Folsom

and the AWU, respectively. For the City of Folsom, the treatment group includes 3,089

households and the control group includes 15,986 households. A number of observations

before and during the treatment period are approximately the same in both groups in the

City of Folsom. For the AWU, the treatment group includes 11,062 households and the

control group includes 187,081 households.

Table 4 and Table 5 provide the basic double difference result in levels ([consumption in

treatment post policy - consumption in control post policy] - [consumption in treatment pre-

policy - consumption in control pre-policy]) for the City of Folsom and the AWU, respectively.

For the City of Folsom, the result in Table 4 indicates that water consumption in treated

households was reduced on average by 0.9 CCFs (748 gallons) per month due to the DC

service which is equivalent to 5.56% of average monthly usage. for the AWU, the result in

Table 5 indicates that water consumption in treated households was reduced on average by

0.23 CCFs (172 gallons) per month due to the DC service which is equivalent to 2.13% of

average monthly usage.

Further investigation of the pre-trends between control and treatment groups is analyzed

using graphical analysis. Figure 4 and Figure 5 present average water consumption by month

in the treatment and control groups with a vertical dash line which indicates the treatment

start time for the City of Folsom and AWU, respectively. Graphs illustrate that despite

differences in average consumption across the treated and control groups before treatment,

there exists a visually distinct increase in this difference in average monthly consumption

between treated and control households following the introduction of DC service (indicated
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by the vertical dashed line). In other words, we observe graphical evidence that there is

a larger difference in average water usage after treatment between those households that

enrolled in DC and those that did not enroll.

We observe this difference more clearly by plotting the difference in average monthly

consumption as a percent difference between the two groups across the sample time horizon.

Figure 6 and Figure 7 illustrates how this percent difference changes across the sample period

for the City of Folsom and AWU, respectively. Reflecting the pattern observed in Figure 4

and Figure 5, we see that there is a significant increase in the difference in average monthly

consumption as a percent between the pre-period, prior to the availability of DC services,

and the post-period, with households under DC treatment. The dashed pink line represents

the average percent difference in the pre- and post-periods. For the City of Folsom, in the

pre-period, we observe that households who become DC enrolled consume approximately 2%

less water per month on average. Whereas, in the post-period, households who are enrolled

in DC consumed about 8% less water per month on average. For the AWU, in the pre-period,

we observe that households who become DC enrolled consume approximately 4.25% more

water per month on average. Whereas, in the post-period, households who are enrolled in

DC consumed about 0.5% more water per month on average.

Figure 8, Figure 9, and Figure 10 illustrate how difference between treated and control

groups in the City of Folsom changes across the households with different baseline consump-

tion. For the purpose of these figures, quantiles of consumption are defined based on the

average baseline summer usage. Quantiles threshold in CCFs are: 13.11 and lower as first

quantile, between 13.11 and 20.26 as second, between 20.26 and 27.93 as third, between 27.93

and 39.33 as fourth, and higher than 39.33 as fifth quantile. These figures illustrate that

there are larger increases in the difference in average monthly consumption between treated

and control households following the introduction of DC service for the higher quantiles.

In addition to this graphical evidence of parallel trends, various fixed effects are employed

to account for both seasonal, annual, and household invariant factors that may determine

consumption. Given the extensive amount of baseline data and number of observations,
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these fixed effects are able to explain a large amount of variation that could otherwise bias

results.

For regression analysis purpose, we organize two panel datasets of household-level monthly

water consumption in the City of Folsom water utility and AWU service areas. City of Fol-

som panel begins January 2013 and ends in August 2016, this period includes the start date

of the DC service (December 2014). AWU panel begins July 2011 and ends in July 2016,

this period includes the start date of the Dropcountr service (July 2015). The regression re-

sults measure the effect of DC taking into account household characteristics that also affect

consumption (e.g. lot size) as well any seasonal or year-specific effects on consumption. The

average effect of DC enrollment on water consumption is estimated by defining two groups;

households who enrolled in DC (treated households) and households who did not enroll in

DC (control households).

In the difference-in-differences regression, the outcome of interest is the log of the house-

holds’ monthly water consumption. Equation 1 indicates the preferred specification. which

qhmy is the water consumption in the household h at month m and year y. The variable

of interest is DC which denotes whether a household observation is in the treatment group

during the post period in which DC was active. We include household-calendar month fixed

effects (γhm) which controls for two types of variables. First, these control for time-constant

variables specific to a household, e.g., number of toilets which is fixed for the vast majority

of households in our sample. Second, the household-calendar month fixed effects control for

calendar month specific water-use factors specific to each household, e.g., household X has an

outdoor irrigation system set to medium irrigation every May and set to high every July. We

also include calendar-month year fixed effects (µmy), which control for consumption factors

which are common to all household within a given calendar month for a specific year, e.g.,

an unseasonably warm October in 2015 or time-specific regulation such as the 2015-16 water

restrictions administered by the California Water Resources Control Board, in our preferred

specification; εhmy captures all unobservables which affect the dependent variable.
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log(qhmy) = α1 ·Dropcountr + γhm + µmy + εhmy (1)

5 Result

We begin with a presentation of the average change in the quantity of water consumption due

to the DC service, then we explore heterogeneity of this effect across baseline consumption

quantiles.

5.1 Average effect of Dropcountr

Results for the difference-in-differences specifications are presented in Table 6 and Table 8 for

the City of Folsom and AWU, respectively. Log of monthly water consumption in households

is the dependent variable in all of the specifications. Standard errors for all of the specifi-

cations are reported in the parenthesis and are clustered at the level of the households to

account for within-household serial correlation in the error term. First column of both tables

has households-by-month fixed effects, month-by-year fixed effects, and DC effect. The DC

effect is defined by an interaction between post-period and treatment households.

For the City of Folsom, the point estimate of average treatment effect (DC effect) using

column (1) specification indicates that DC service suggests 5% reduction in monthly water

consumption, on average. This result is both statistically and economically significant, mean-

ing we can reject the hypothesis that there is no effect of DC enrollment on average monthly

water consumption. The change in average gallons per day is an estimated 24 fewer gallons

for the average enrolled household. To put these reductions in perspective: the average

shower uses 16-40 gallons (depending on shower head efficiency), clothes washing machines

require 25-40 gallons per wash, while dishwashers use 6-16 gallons per load. In addition,

the estimates reported here are consistent with those found for WaterSmart Software of a

4.9-5.1% average treatment effect for two experimental designs (where no effect was found
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for a third utility) (Brent et al., 2015).

For the AWU, the point estimate of average treatment effect (DC effect) using column (1)

specification indicates that DC service suggests 3% reduction in monthly water consumption,

on average. The change in average gallons per day is an estimated 11 fewer gallons for the

average enrolled household. To put these reductions in perspective: The average residential

water use in Austin during 2014 was 70 gpcd.

Notably, although the previous graphs suggest that all households reduced consumption

in the post-period, the controls in our regression analysis allow identification of DC’s effect on

household consumption that takes this general reduction into account. Thus, we find that DC

treated households reduced consumption during the post-period more than households who

did not enroll in DC. Taking into account baseline differences and controlling for consumption

factors as described in the discussion of the econometric model presented in Equation 1.

5.2 Investigating Heterogeneity

In this section, we move beyond estimation of average treatment effects and we consider

estimating heterogeneity of household’s responses to DC. Understanding heterogeneity of

treatment effect will allow to target households that are more responsive which will be

a cost-effective strategy (Heckman et al., 1997; Djebbari and Smith, 2008; Ferraro and Mi-

randa, 2013). Also, investigating treatment effect by subgroups helps researchers understand

generalizability of the result of this study to other populations and places (Manski, 2004;

Imai et al., 2013; Ferraro and Miranda, 2013).

5.2.1 Heterogeneity of Dropcountr Effect in the City of Folsom

We explore heterogeneity of treatment effect by average summer baseline (pre-) period water

consumption. For each household, we calculate the mean summer pre-treatment water con-

sumption. Next, we create dummy variables for whether that mean summer pre-treatment
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water consumption is in the first, second, third, fourth, or fifth quantile of the whole sample

summer pre-treatment consumption (i.e. Q.1, Q.2, etc.). Next, we interact these dummies

with treatment household and time dummy indicators. We defined baseline consumption

quantiles as 20% and lower, between 20% and 40%, between 40% and 60%, between 60%

and 80%, and higher than 80% percentiles. Quantiles threshold in CCFs are: 13.11 and

lower as first quantile, between 13.11 and 20.26 as second, between 20.26 and 27.93 as third,

between 27.93 and 39.33 as fourth, and higher than 39.33 as fifth quantile.

Results for this specification are reported in column (2) of Table 6. The control variables

in this regression correspond to Columns 1 in same table. We find that the DC effect

is monotonically increasing in baseline consumption level–the largest effect is observed for

the group with highest baseline consumption. These results are consistent with the average

effect for all households that is estimated and presented in the first column of the same table.

Preliminary analysis suggests that households in the highest quintile of baseline consumption

reduce consumption by an estimated 13% in response to the DC service. However, there

appears to be a 7.2% increase in usage in average monthly consumption for those households

in the lower quartile of baseline consumption. This response is referred to as a “boomerang

effect”, where customers who learn that they are actually using less than their neighbors

or other households like their own increase their demand (Clee and Wicklund, 1980). It

should be noted that the analyses on both Opower and WaterSmart do not find evidence

of a boomerang effect in any of the studied markets. The techniques employed here take a

rather coarse approach to segmenting the population. Continued work on this project will

explore a potential boomerang effect in greater detail.

The coefficient -0.047 in column (1) of Table 6 summarizes average percent reduction

across all households. This is different than the aggregate reduction in consumption resulting

from DC because it does not take into account the fact that households with high levels of

baseline use experienced larger percentage reductions than households with lower baseline

use. As a consequence, the average percentage reduction capture by the coefficient in column

(1) is less than the aggregate effect of DC. In summary, in terms of overall impact of DC,

the object of interest is the aggregate treatment effect, which we estimate to be -6.98% for
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the population of households participating in DC. Assuming all of Folsom participated in

DC and had a similar response, then the aggregate reduction in water consumption for the

single family residential sector in Folsom would be -6.94%. This is slightly lower than the

aggregate effect for participating households because the composition of households in terms

of baseline use is shifted towards higher end users for the overall population in Folsom 2.

Table 7 summarizes reductions in water usage in levels rather than percentage reductions

(also taking into account timing of enrollment) due to Dropcountr for households who par-

ticipated in the program. Total reduction in water consumption due to Dropcountr is 37.5

million gallons from January-2015 to September-2016 (inclusive). Dropcountr caused 9.5 and

23 million gallons reduction in consumption for households in quintile 4 and 5, respectively.

5.2.2 Heterogeneity of Dropcountr Effect in the Austin Water Utility

Similar to the City of Folsom, we explore variation of Dropcountr enrollment effect by average

summer baseline (pre-) period water consumption. For each household, we calculate the

mean summer pre-treatment water consumption and create dummy variables for whether

that mean summer pre-treatment water consumption is in the first, second, third, fourth,

or fifth quantile of the whole sample summer pre-treatment consumption (i.e. Q.1, Q.2,

etc.). Baseline consumption quantiles were defined as 20% and lower, between 20% and

40%, between 40% and 60%, between 60% and 80%, and higher than 80% percentiles; thus,

they are quintiles. In terms of average monthly consumption, quantiles thresholds are 4.14

and lower (quintile 1), between 4.14 and 6.95 (quintile 2), between 6.95 and 10.69 (quintile

2 Aggregate treatment effect for the population of households participating in DC is calculated using

following equation:

Aggregate Effect =

∑5
i=1 q̄i ∗ βi ∗ (NHHi)∑5

i=1 q̄i ∗ (NHHi)
(2)

where: Aggregate Effect is aggregate treatment effect for the population of households participating in

DC, q̄i indicates average usage in 2013 for households who eventually enrolled in DC, βi indicates estimated

coefficient for the quintile i from Table 6, and NHHi indicates number of enrolled households in quintile i.
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3), between 10.69 and 17.51 (quintile 4), and higher than 17.51 (quintile 5).

Result for this section is presented in column (2) of Table 8. We find that Dropcountr ef-

fect is monotonically increasing in baseline consumption level–the largest effect is observed for

the group with highest baseline consumption. Preliminary analysis suggests that households

in the highest quintile of baseline consumption reduce consumption by an estimated 16.7%

in response to the Dropcountr service. This makes sense since household with higher base-

line water consumption likely have more discretionary water-use, and thus, can more easily

reduce their water consumption–especially with regular feedback on their specific water con-

sumption patterns. The last row in Table 8 summarizes aggregate reduction in consumption

resulting from Dropcountr for households that participated in this program. In summary,

in terms of overall impact of Dropcountr, the object of interest is the aggregate treatment

effect, which we estimate to be -8.90% for the population of households participating in

Dropcountr.

Finally, Table 9 summarizes reductions in water usage in levels rather than percentage

reductions (also taking into account timing of enrollment) due to Dropcountr for households

who participated in the program. Total reduction in water consumption due to Dropcountr

is 41 million gallons from June 2015 to July 2016 (inclusive). Dropcountr caused 11 and 35

million gallons reduction in consumption for households in quintile 4 and 5, respectively.

6 Conclusions and Policy Implications

This study provides insight how a social-norm-based conservation programs effect on water

usage. Specifically, the effect of DC on water usage was examined by using household-

level panel data and adopting a difference-in-differences approach. Results suggest that

the introduction of the DC services for the population of households participating in DC

causes aggregate treatment effect of 7% to 9% reduction in water usage which depends on

the location of the program. In addition, analysis suggests that in response to the DC

service households in the highest quintile of baseline consumption reduce water usage by an
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estimated 13% in the City of Folsom and 17% in the AWU –at the margin, these are large

effects.

These are also evidence that not all of the households react alike to DC. The results hold

as a general rule, those in the higher quantiles of the baseline water usage had the largest

responses. This result is comparable with the existing literature (Allcott, 2011; Ferraro and

Miranda, 2013; Brent et al., 2015). Such a result indicates the effectiveness of sub-group

targeting in social-norm-based conservation programs towards baseline users with higher

consumption.

Future analyses that we aim to investigate are (i) the persistence of these effects, (ii)

whether there are other subgroups to target besides high baseline users (e.g., high income

households or those with large lot sizes), (iii) the channels through which the DC pro-

gram acts (e.g., consumption feedback, social comparison, household budget, etc.), and (iv)

whether the program’s effect can be magnified when coupled with other conservation pro-

grams (e.g. daily water readings, lawn replacements, media messaging, etc.).
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mentalist ideology: Evidence from a randomized residential electricity field experiment.

Journal of the European Economic Association 11 (3), 680–702.

Dalhuisen, J. M., R. J. Florax, H. L. De Groot, and P. Nijkamp (2003). Price and income

elasticities of residential water demand: a meta-analysis. Land economics 79 (2), 292–308.

Djebbari, H. and J. Smith (2008). Heterogeneous impacts in progresa. Journal of Econo-

metrics 145 (1), 64–80.

Ferraro, P. J. and J. J. Miranda (2013). Heterogeneous treatment effects and mechanisms

in information-based environmental policies: Evidence from a large-scale field experiment.

Resource and Energy Economics 35 (3), 356–379.

Ferraro, P. J., J. J. Miranda, and M. K. Price (2011). The persistence of treatment effects

with norm-based policy instruments: evidence from a randomized environmental policy

experiment. The American Economic Review 101 (3), 318–322.

Ferraro, P. J. and M. K. Price (2013). Using nonpecuniary strategies to influence behavior:

evidence from a large-scale field experiment. Review of Economics and Statistics 95 (1),

64–73.

Heckman, J. J., J. Smith, and N. Clements (1997). Making the most out of programme

evaluations and social experiments: Accounting for heterogeneity in programme impacts.

The Review of Economic Studies 64 (4), 487–535.

Imai, K., M. Ratkovic, et al. (2013). Estimating treatment effect heterogeneity in randomized

program evaluation. The Annals of Applied Statistics 7 (1), 443–470.

Ito, K. (2014). Do consumers respond to marginal or average price? evidence from nonlinear

electricity pricing. The American Economic Review 104 (2), 537–563.

19



Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Economet-

rica 72 (4), 1221–1246.

Olmstead, S. M., W. M. Hanemann, and R. N. Stavins (2003). Does price structure matter?

household water demand under increasing-block and uniform prices. New Haven: School

of Forestry and Environmental Studies, Yale University, Working Paper .

Olmstead, S. M., W. M. Hanemann, and R. N. Stavins (2007). Water demand under al-

ternative price structures. Journal of Environmental Economics and Management 54 (2),

181–198.

Olmstead, S. M. and R. N. Stavins (2007). Managing water demand: Price vs. non-price

conservation programs. A pioneer institute white paper 39.

Renwick, M. E. and R. D. Green (2000). Do residential water demand side management poli-

cies measure up? an analysis of eight california water agencies. Journal of Environmental

Economics and Management 40 (1), 37–55.

20



Figures and Tables

Figure 1: Dropcountr Home Water Use Report sample
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Figure 2: Progression of DC enrollment over the treatment period in City of Folsom, CA.
Total number of enrolled households by end of September 2016, was 3,350.
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Figure 3: Progression of Dropcountr enrollment over the treatment period in the Austin
Water Utility (AWU). Total number of enrolled households by end of July-2016, was 11,853.
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Figure 4: Average monthly consumption by Dropcountr enrollment status in City of Folsom,
CA. Vertical dashed line indicates start of treatment period (January- 2015)
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Figure 5: Average monthly consumption by Dropcountr enrollment status in the Austin
Water Utility (AWU). Vertical dashed line indicates start of treatment period (June-2015)

25



−20

−15

−10

−5

0

5

F
eb

 2
01

3

Ju
n 

20
13

O
ct

 2
01

3

F
eb

 2
01

4

Ju
n 

20
14

O
ct

 2
01

4

F
eb

 2
01

5

Ju
n 

20
15

O
ct

 2
01

5

F
eb

 2
01

6

Ju
n 

20
16

O
ct

 2
01

6

P
er

ce
nt

 D
iff

er
en

ce

Figure 6: Difference is average monthly consumption, as a percent, across time by Dropcountr
enrollment status in City of Folsom, CA. Vertical dashed line indicates start of treatment
period. Pink dash represents the average percent difference in household consumption for
the pre- and post-periods. Average percent difference in household consumption for the
pre-periods is 2.25 and for post-periods is 8.63.
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Figure 7: Difference is average monthly consumption, as a percent, across time by Drop-
countr enrollment status in the Austin Water Utility (AWU). Vertical dashed line indicates
start of treatment period. Pink dash represents the average percent difference in house-
hold consumption for the pre- and post-periods. Average percent difference in household
consumption for the pre-periods is 4.25 and for post-periods decreased to 0.50.
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Figure 8: Average monthly consumption by Dropcountr enrollment status and baseline con-
sumption in quantiles one and two in City of Folsom, CA. Vertical dashed line indicates
start of treatment period (January- 2015). Quantiles of consumption are defined based on
the average baseline summer usage. Quantiles threshold in CCFs are: 13.11 and lower as
first quantile, between 13.11 and 20.26 as second, between 20.26 and 27.93 as third, between
27.93 and 39.33 as fourth, and higher than 39.33 as fifth quantile.
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Figure 9: Average monthly consumption by Dropcountr enrollment status and baseline con-
sumption in quantiles three and four in City of Folsom, CA. Vertical dashed line indicates
start of treatment period (January- 2015). Quantiles of consumption are defined based on
the average baseline summer usage. Quantiles threshold in CCFs are: 13.11 and lower as
first quantile, between 13.11 and 20.26 as second, between 20.26 and 27.93 as third, between
27.93 and 39.33 as fourth, and higher than 39.33 as fifth quantile.

29



5

4

F
eb

 2
01

3

Ju
n 

20
13

O
ct

 2
01

3

F
eb

 2
01

4

Ju
n 

20
14

O
ct

 2
01

4

F
eb

 2
01

5

Ju
n 

20
15

O
ct

 2
01

5

F
eb

 2
01

6

Ju
n 

20
16

O
ct

 2
01

6

0

20

40

60

0

20

40

60

U
sa

ge
 p

er
 m

on
th

 (
C

C
F

)

Dropcountr Status:    Never enrolled   Enrolled   

Figure 10: Average monthly consumption by Dropcountr enrollment status and baseline
consumption in quantiles four and five in City of Folsom, CA. Vertical dashed line indicates
start of treatment period (January- 2015). Quantiles of consumption are defined based on
the average baseline summer usage. Quantiles threshold in CCFs are: 13.11 and lower as
first quantile, between 13.11 and 20.26 as second, between 20.26 and 27.93 as third, between
27.93 and 39.33 as fourth, and higher than 39.33 as fifth quantile.
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Table 1: Summary of message types sent by Dropcountr to the enrolled customers in City
of Folsom

Message Types Number of times sent

Utility admin message 50,219
Monthly report email 36,356
Unsolicited monthly report email 3,446
Leak alert 2,541
New user tips 767

Total 93,329
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Table 2: Summary statistics of Summary Statistics of Data Availability for Analysis in City
of Folsom, CA. Monthly consumption values in CCFs for baseline period: January 2013
through December 2014.

All accounts Control group Treatment group
Number of accounts 19,075 15,986 3,089
Pre-period observations 437,327 365,515 71,812
Treatment period observations 330,172 272,653 57,519
Baseline:
Average 20.13 20.11 20.24
25th percentile 7.78 7.65 8.05
Baseline median 15.00 14.88 15.70
75th percentile 26.51 26.36 27.00
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Table 3: Summary Statistics of Data Availability for Analysis in the Austin Water Utility
(AWU). Monthly consumption values in CCFs for the baseline period: July 2011 through
June 2015

All accounts Control group Treatment group
Number of accounts 198,143 187,081 11,062
Pre-period observations 7,062,550 6,676,203 386,347
Treatment period observations 2,672,757 2,512,258 160,499
Baseline:
Average 9.23 9.713 9.205
25th percentile 4.01 3.877 4.01
Baseline median 6.68 6.55 6.684
75th percentile 11.36 12.16 11.23
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Table 4: Average Monthly Water Consumption of Treated and Control Group (CCFs) in
City of Folsom, CA

(1) (2) (3) (4)

Control Treated Difference Difference
Households Households (levels) (%)

Pre-period 20.11 20.24 0.13 0.66
Post-period 15.62 14.85 -0.76 -4.90

Double Difference -4.49 -5.39 -0.90 -5.56

Notes: Households that never enrolled in Dropcountr consumed on average 20.11 CCF of water

pre-period; this number reduced to 15.62 CCF in post-period. However, households that eventually

enrolled in Dropcountr consumed 20.24 CCF of water pre-period and 14.85 CCF in post-period.

Comparing two groups indicates that Dropcountr reduced water consumption in treatment group

by 0.9 CCF per month. In percentage terms, Dropcountr reduced water consumption in treatment

group by 5.56%.
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Table 5: Average Monthly Water Consumption of Treated and Control Group (CCFs) in
the Austin Water Utility (AWU)

(1) (2) (3) (4)

Control Treated Difference Difference
Households Households (levels) (%)

Pre-period 9.06 9.54 0.48 5.26
Post-period 7.92 8.17 0.25 3.13

Double Difference -1.14 -1.37 -0.23 -2.13

Notes: Households that never enrolled in Dropcountr consumed on average 9.06 CCF of water

pre-period; this number reduced to 7.92 CCF in post-period. However, households that eventually

enrolled in Dropcountr consumed 9.54 CCF of water pre-period and 8.17 CCF in post-period.

Comparing two groups indicates that Dropcountr reduced water consumption in treatment group

by 0.23 CCF per month. In percentage terms, Dropcountr reduced water consumption in treatment

group by 2.13%.
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Table 6: Average treatment effect of opt-in Dropcountr enrollment and Heterogeneous effects
by consumption quantile in City of Folsom, CA

(1) (2)

Dropcountr Average Effect -0.047*** -
(0.003)

Dropcountr Effect in Quantile 1 0.072***
(0.009)

Dropcountr Effect in Quantile 2 -0.018**
(0.007)

Dropcountr Effect in Quantile 3 -0.044***
(0.006)

Dropcountr Effect in Quantile 4 -0.060***
(0.006)

Dropcountr Effect in Quantile 5 -0.129***
(0.007)

Dropcountr Aggregate Effect -6.9%

Month by Year Effects Yes Yes
Household by Month Fixed Effects Yes Yes
Observations 767,000 767,000
R-squared 0.185 0.185

Notes: Quantiles of consumption are defined based on the average baseline summer usage. Quantiles

threshold in CCFs are: 13.11 and lower as first quantile, between 13.11 and 20.26 as second,

between 20.26 and 27.93 as third, between 27.93 and 39.33 as fourth, and higher than 39.33 as fifth

quantile. Dropcountr aggregate effect is calculated for the population of households participating

in Dropcountr. *p<0.1; **p<0.05; ***p<0.01
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Table 7: Cumulative water savings in absolute terms for households who participate in
Dropcountr program by September-2016 (All of the consumption numbers are in thousand
gallons) in the City of Folsom

Quintile
Number of
households

Consumption
after enrollment

Dropcountr
Effect

Consumption
if not enrolled

savings

1 333 25,439 0.072 23,730 -1,709
2 586 67,815 -0.018 69,058 1,243
3 779 118,971 -0.044 124,446 5,476
4 767 149,931 -0.060 159,501 9,570
5 535 154,607 -0.129 177,505 22,898

Total 3,000 516,762 - 554,240 37,478

Notes: All of the consumption numbers are in thousand gallons. Overall, we estimate Dropcountr

reduced aggregate water consumption by 37.5 million gallons for program participants between

enrollment up to September 2016.
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Table 8: Average treatment effect of opt-in Dropcountr enrollment and Heterogeneous effects
by consumption quantile in the Austin Water Utility (AWU)

(1) (2)

Dropcountr Average Effect -0.029*** -
(0.002)

Dropcountr Effect in Quantile 1 0.142***
(0.005)

Dropcountr Effect in Quantile 2 0.066***
(0.004)

Dropcountr Effect in Quantile 3 -0.021***
(0.004)

Dropcountr Effect in Quantile 4 -0.087***
(0.004)

Dropcountr Effect in Quantile 5 -0.167***
(0.004)

Dropcountr Aggregate Effect -8.9%

Month by Year Effects Yes Yes
Household by Month Fixed Effects Yes Yes
Observations 9,531,661 9,531,661
R-squared 0.11 0.11

Notes: Quantiles of consumption are defined based on the average baseline summer usage. Quan-

tiles threshold in CCFs are: 4.14 and lower as first quantile, between 4.14 and 6.95 as second,

between 6.95 and 10.69 as third, between 10.69 and 17.51 as fourth, and higher than 17.51 as fifth

quantile. Dropcountr aggregate effect is calculated for the population of households participating

in Dropcountr. *p<0.1; **p<0.05; ***p<0.01.
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Table 9: Cumulative water savings in absolute terms for households who participate in
Dropcountr program by July-2016 (All of the consumption numbers are in thousand gallons)
in the Austin Water Utility

Quintile
Number of
households

Consumption
after enrollment

Dropcountr
Effect

Consumption
if not enrolled

savings

1 1,519 34,338 0.142 30,068 -4,270
2 1,857 61,428 0.066 57,625 -3,803
3 1,903 78,306 -0.021 79,985 1,680
4 2,408 125,824 -0.087 137,813 11,990
5 2,334 176,744 -0.167 212,178 35,434

Total 10,021 476,639 - 517,669 41,030

Notes: All of the consumption numbers are in thousand gallons. Overall, we estimate Dropcountr

reduced aggregate water consumption by 41 million gallons for program participants between en-

rollment up to July 2016.
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